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We discuss the electromagnetic potential of partially polarized light, which includes as a special case
linearly polarized lasers, and the radiation of free electrons induced by such beams. A classical electro-
dynamics calculation is performed in order to obtain the low-order harmonic cross sections at low beam
intensities. According to the correspondence principle for radiation processes in the Thomson limit, we
find agreement between our results and those of quantum electrodynamics. The implications of this
correspondence for processes at arbitrary intensities, relativistic electrons, and pulsed beams are also un-

derlined.

PACS number(s): 41.60.Ap, 42.25.Ja, 03.50.De

Classical and quantum electrodynamics (QED) must
agree in the Thomson limit (TL), e.g., a rest electron
scattering a low frequency and intensity monochromatic
plane wave. A consistent physical and theoretical under-
standing of the interaction of light beams with free elec-
trons, within classical and quantum treatments, is thus
not only of importance in its own right but also as a
necessary piece for further comprehending the more
complex scattering of electrons with ultrahigh-power
lasers. It is also relevant to topics of current physical in-
terest from both theoretical [1-4] and practical [1,5,6]
points of view. Among possible practical applications of
high intensity lasers [7] brought into collision with elec-
trons would be the design of a compact source of short
pulse x rays that utilizes the Compton-like backscattering
of x rays from such lasers [1,5,6]. X rays originating in
this way would generally be produced in certain states of
partial polarization.

We stress that classical calculations [1,3,8] for arbi-
trary field intensities, laser pulse shapes, and relativistic
electrons, should go over into the standard classical-QED
correspondence in the TL. For the higher harmonic (or
multiphoton) cross section this is a nontrivial check since
it is not uncommon, as illustrated below, to find agree-
ment for the fundamental harmonic Thomson cross sec-
tion whereas the corresponding classical second harmon-
ic rate disagrees with QED in the TL.

For ordinary Compton scattering, as is well known,
classical and QED results are identical in the TL for all
kinds of incident beams. However, for the nonlinear
higher harmonic processes such agreement was demon-
strated only for incident circularly (all harmonics) [9] and
linearly (second harmonic) [2,10] polarized light. The
case of partially polarized light, perhaps the most com-
mon form of light everywhere in nature, is clearly of
great physical interest. In particular, unpolarized or nat-
ural light offers one example of agreement at the level of
the Thomson cross section that contrasts the disparate
results so far obtained for second harmonic radiation
[4,10,11]. We shall show below that the second harmonic
classical cross section for partially polarized light agrees
with the QED result [4] in the TL.

We describe the QED process as the simultaneous ab-
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sorption of two or more photons, with equal or distinct
polarizations, together with the emission of a single final
photon [4]. The systematic analysis of Feynman graph
amplitudes gives an unequivocal answer in this case. On
the other hand, in classical electromagnetism, it is the
motion of the electron in the wave that determines the ra-
diation given off. Thus, a physically relevant question
here refers to the form of a general vector potential that,
after allowing for random fluctuations of the field, de-
scribes correctly the scattered radiation out of a partially
polarized wave. In the following, such a general form of
the vector potential is introduced valid for partially po-
larized incident waves.

The orbit of an electron in a plane monochromatic
wave depends on the potential A representing the wave
and determines the emitted radiation. For beams in
definite states of polarization, A has known functional
forms. A number of theoretical calculations include the
Schott cross section for circularly polarized light [12,13],
as well as other results for linear, circular, and elliptically
polarized incident beams [1,8,11]. In the more general
case of light in a state of partial polarization, though a
common physical situation, it is not immediately clear a
priori what is the functional form of the vector potential
representing the wave.

As we know, intensity fluctuations of partially polar-
ized light can be described by assuming a superposition of
two independent beams linearly polarized parallel to the
x and y axis. The instantaneous cycle-average total inten-
sity is thus =T, +T,, where I, is the intensity of the A-
polarized beam. The above statement does not pay atten-
tion to the radiation emitted by an electron in this wave.
It does, however, suggest a general vector potential su-
perposition of two linearly polarized waves. We note that
in the radiation gauge the potential must involve only the
two independent amplitudes Ag,,I, < 43,, along each
axis A=x,y.

Let k*=(w/c,k) be the wave vector of the incident
beam which propagates along the positive z axis. The
monochromatic potential A({) we seek must be ex-
pressed as the superposition A= A+ A, of the two in-
dependent potentials with arbitrary linear polarization

A =(8, 4o, +E, 4g, )cost , (1a)
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A,=(—8, Ay +8, Aj,)sing , (1b)  dP;/dQ=(e’’0*/87°c) 3, IS\, (5a)
i=1,2
where {=k-x =w(t—z/c). Of the simpler choices that n 2 ! ) R
reduce such superposition to a potential containing only S — f o [(AX@Xv)]exp{il[+z—1-r]}d{, (5b)

two independent amplitudes along each axis (say 4, ), ()
Aoy = Aox, Aoy = Aoy, and (i) A4, = A, =0 give ellip-
tic and linear polarization which do not correspond to
the case of a partially polarized beam. If, on the other
hand, we choose 4, =0, 4, = 4, or

A =€, Ag,cos§+E, A, (cos§+sinf) , ()

we find a more general potential which is not linearly nor
elliptically polarized. Notice that it can also be in-
terpreted as the superposition of (la) with the
elliptically  polarized  wave AM)=%_ Ay cos
+%€, A,,sing, or as the superposition of two linearly po-
larized potentials along the x and y axis given by each
term in (2), respectively. In any case Eq. (2) represents a
polarization vector that changes with time at all points of
the wave, i.e., not according with linear or elliptic polar-
ization. We shall assume this form in our calculations
below. Ultimately, Eq. (2) will be justified a posteriori by
our results.

The solution for the orbit of a relativistic electron mov-
ing in the field of a monochromatic plane wave of arbi-
trary intensity is, of course, quite familiar from preceding
discussions in the literature [14,15]. Our interest here is
in the solution for the periodic motion of an electron, at
rest on the average, whose trajectory is ¥=(X,y,Z). We
write (a bar means cycle average) [15]

e

—= — Ad,“:—..
m*cwf <45,y

e
m,cow

[ aa.
(3a)
z=(e2/2m3c%0) [ (42— ADd¢
where the mass m, of the electron inside the wave (2)
and the field-intensity parameter 7 are
ml=mA1+7), *=(e?A%/m’cH=r2+212,
— (3b)
T =(edy /V2mc?), A=x,y .
Substitution of (2) in (3a) gives the normalized orbit
r=ot/c=(x,y,z) and its § derivative v

x=—x¢sing, y=yq(cos{—sin¢) ,
(3¢)
z=L(x3sin2{—2y}cos2¢) ,
v, = —xpc085, v, = —yqy(sinf+cosf) ,
(3d)
v, =Lt(x3cos2{+2y3sin2¢g) ,
with _ a
V2T, V2r, @

Xo= 55775 » = .
222 0T (12 a2

Notice that the electron trajectory in (3c) for the particu-
lar case of linear polarization along the x axis (7, =0) as-
sumes a familiar form previously used in the literature
[8,16].

In order to calculate the I-harmonic power P, radiated
per cycle into solid angle dQ by an electron in a periodic
orbit such as (3c), we use the well known expression
(8,17]

where i =(sinf cos¢,sinfsing,cosf) is a constant unit
vector defining the solid angle of the emitted radiation.
Note the integral (5b) is in terms of the variable £ (instead
of time #), and that the polarization vector fi X (4 Xv)
is normal to A so that it can be resolved into
the two components £;={(cos6 cos¢,cosd sing, —sinf),
and €,=(—sing,cos$,0). The final polarization is not
detected, hence the sum in (5a).

From the above relations the components of this vector
are [AX(0Xv)];= —v,cosf cos¢ —v,cosd sing +v,sind
and [AX (A Xv)],=v,sing —v,cosg, so that

[AX(@XV)];=(x;+y;)cos{+y,sin
+(sin@/4)(x3cos2& +2y3sin2f) , (6a)

[A X (A XV)],=(—xysing +y,cosd)cos +y,cosd siné ,
(6b)

where x;=xycosf cosp, y,=y,cosOsing. Similarly, in

the argument of the exponential function of (5b) we shall

need

z—f-r=(x]+y})sin{—yjcos§

+—(—1:~§~9L0)(x§sin2§——2yécos2§) , (7N

with x | =x,siné cosg, y; =y,sinf sind.

The /-harmonic cross section is defined by

do,;/dQ=1/I{dP;/dQ) , ®)
where I=(I)=I,+I, I,=(I,) (A=x,y), repre-
sent average intensities, and I, =w?A43, /(8wc),

T ) =w?A (2,}, /(4mc) the cycle-average intensity com-
ponents defined above.

The previous discussion considers fields of arbitrary in-
tensity; we now specialize to the low intensity regime
75, <<1, thus x4,y, <<1 and z —fi-r << 1. In this case the
ordinary Thomson cross section is of O(Ti, TeTy)s
then clearly it requires only the approximations
exp[i(z—f-r)]=1 and [AX(AXV)];=(x,+y,)cos
+y,sin{ in the integrand of (5b). Hence,

sV = fozveig[(xl +yi)cosf+y,sinfldg
:7(x1+y1+1y1) » (ga)
S(zl) _ fOZﬂ'e,-g[( —XOSin¢ +yOCOS¢ )cosg—}—yocosqb Siﬂg]dé'

=m(—xysing +y,cosd+iyycosd) . (9b)

The cross section for partially polarized incident beams
and final polarization not detected is thus, after substitu-
tion of (9) in (5a) and (8),

do,

dQ

=r}[g"(0)(cos?0 cos’p +sin’p)

+g{1(0)(cos*0 sin’*p+cos?$)] , (10a)

where ro=e?/(mc?) is the classical electron radius.
Moreover, to obtain (10a) we have used { A, Aoy )
={ Ay, )< Ao, > =0, assumed for fields whose intensity
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fluctuations are independent, and defined the classical de-
grees of first-order coherence as

I
g, (0)=—=1(1—P),
with P=(I, —1I,)/I the degree of polarization.

It is interesting to note that (a) both potentials in Egs.
(1), the above superpositions (i) and (ii) of (1), and the po-
tential A‘'") defined before, lead also to the Thomson
cross section (10); and (b) the QED result in the TL is

J

I,
”(0)———— La1+p), (10b)

S<12>=f02"92i§ (x1+y1)cos§+ylsin§+%(x%cos2§+2y%sin2§) {1+2i[(x]+y|)sinf—y|cost]}dE ,

S§2 = fOZ”eZig[( —x¢sing +yocosd)cost +yqcosd sing {1 42i[(x | +y 1 )sinE—yicost]}dE

with the result to the required order

SP =m{(x3/4)sin0—(x+y | )Nx;+y,)+y .y}

SP =m{(x|+y|)xgsing —yox cosp+i[x,yising—yo(x| +2y])cosd]} .

—i[(x]+yiy+yilx;+y)—
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identical to (10a) and (10b) provided intensities are substi-
tuted by expectation values of the number of photons in
the beam. However, in terms of P, the quantum degrees
of coherence are the same as those in (10b). Both theories
agree for all beams in this case, as previously mentioned.

We now turn to the next order or / =2 cross section to
O(T‘;t,Ti’l'i,TxTy,T 7' ) in the low intensity regime. It is
clear that only terms to O(7,) need be retained in the ex-
pansion of exp[2i(z—1-r)] in (5b). The integral can now
be evaluated by inserting (6) and (7) in (5b),

(11a)

(11b)

(12a)
(12b)

(y3/2)sin81} ,

Using (12a) and (12b) in (5a) and (8) we can now derive the second harmonic cross section for partially polarized in-

coming light and unpolarized emitted radiation. Thus,

(do,/dQ)=(nqry/V2)*165in?0{g{>(0)[(cos cos’p—L)>+ Lsin>2¢ ]

As before we have used for the two orthogonal 1n-
dependent beam components (Ao 43, ) =( Ao, )( 43,

+g:22(0)[ (cosf sin?p — 1 )*+ 1sin*2¢ ] +g 2/(0)(cos?2¢ + cos? sin?24)} . (13)
[
g2(0)=(212/1*)=1(1+P)
g2(0)=(212/1)=1(1—P) (15)

=(43 x Aoy y=(A43. )¢ Ao, ) =0, and exhibited the
class1ca1 degrees of second-order coherence
(T x ) (T, 1.1 )
(2)(0)_ 2 A=x,p g,g)(O) T" . (14)

We also introduced in (13) the dimensionless parameter
mn related to the average intensity of the beam,

=73 +272) =4me?l /o*m?c’.

It is worth noting that Eq. (13) agrees with the QED
result in the Thomson limit [4]. The correlation func-
tions appearing in QED are of course the quantum
mechanical degrees of coherence, instead of the classical
quantities (14). It is known, however, that for classical
beams both definitions of the degree of coherence yield
the same end product. For example, for an incident x-
polarized coherent (laser) beam we have g'¥'=1,
g;3)=gx2) =0, and this particular case of Eq. (13) agrees
with previous classical [11,18] and semiclassical [19] cal-
culations, and with QED [2,10]. It is also instructive to
observe that neither potential or superpositions (i) and (ii)
of Eq. (1), nor the elliptic potential A‘"), lead to the
cross section (13). This result contrasts with the situation
previously encountered for the first harmonic cross sec-
tion (10).

The fluctuations of chaotic light beams, e.g., from
thermal sources, can be evaluated by means of the corre-
lation functions (14) and the known [20] ensemble
distribution p(I,) of the instantaneous intensity,
p(I,)=I;"'exp(—T, /I,). We find

g2(0)=(1,1,/1%)= '(1—P2)

and g@(0)=I1"XI*)=(3+P?/2 for the total
degree of coherence, so that the decomposition [4]

g(0)=g2 0)+g(2’(0)+2gm(0) valid for arbitrary
beams, is satlsﬁed For completely unpolarized light
(P =0), Eq. (13) goes over, as expected, into the fully un-
polarized quantum cross section given in [10]. Some pre-
dictions of the second harmonic cross sections at different
values of P are shown in Fig. 1 for incident chaotic light
of wavelength 100 nm and intensity n=5X107°. It is in-
teresting to contrast this cross section with the prediction
of (10) for ordinary Thomson scattering for the same in-
cident beam and values of P (inset of Fig. 1).

The original motivation for this paper was to perform
classical calculations of the scattering of partially polar-
ized light by free electrons so as to address the issue of
classical-quantum correspondence for higher harmonic
radiation. An immediate consequence was to find agree-
ment with QED [4,10], and to correct [11] and clarify
[18] previous published results. Before [2], it was also
used to clear up a result [21] for linearly polarized light.
The upshot is that the correspondence principle is
relevant for a consistent overall picture.

A key point in the present discussion is the electromag-
netic potential representing a partially polarized wave.
The potential must take into account the fact, which is
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FIG. 1. The Thomson (inset) and second harmonic differential cross
sections do /d () at values of the degree of polarization P =0, 0.5, 1, for
the azimuthal angle: ¢=0°.

nontrivial and very important in this case, that its polar-
ization vector varies with time at all space points of the
wave differently than for linear or elliptic polarization al-
though still represented by the superposition of two
linearly polarized waves. The expression in Eq. (2)
possesses this characteristic. Consequently, as the degree
of polarization changes from unpolarized to linearly po-
larized light, it describes correctly both the statistical
properties of the incident beam and also the fundamental
and second harmonic radiation emitted by the electron.
Any of the simpler linear or elliptic potentials considered
above, e.g., Egs. (la) and (1b), yields the ordinary Thom-
son cross section (10a). By contrast, they cannot accom-
modate the second harmonic cross section. One
significant outcome here is that only higher harmonic ra-
diation enables one to extract the potential representing a
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partially polarized plane wave. We may conclude there-
fore that the electron motion in the wave represented by
expression (2) induces the emission of radiation that, clas-
sically and in the Thomson limit, corresponds to the
QED Compton-emitted photon for processes in which
two or more photons, with distinct or equal polarizations,
are simultaneously absorbed.

Although we have focused on the Thomson limit and
low-intensity cross sections for a rest electron, it is of
great interest to know to what extent the classical-QED
correspondence discussed here unfolds as the electron be-
comes increasingly relativistic and for arbitrary intensi-
ties and pulse shapes of the incident beam. It would seem
worthwhile to discuss this situation for the higher-order
cross sections induced by partially polarized light. More-
over, we can also expect that for arbitrary intensities of
the incident beam our choice of initial condition that
yields expression (3) should also lead in the Thomson lim-
it to a more general cross section induced by partially po-
larized high intensity radiation, similar to the Schott
cross section [12,13] in the case of incident circularly po-
larized light. Work in these directions is proceeding.

The magnitude of the second harmonic cross section
can be magnified through its nonlinear dependence on the
intensity, using larger but realistic values for 7 [2,4] in
the low-intensity regime. Another less familiar mecha-
nism [22] concerns the second-order degrees of coherence
defined in (14). For a pulsed beam with a pulse separa-
tion equal to T and pulse duration 7, the second-order
coherence is generally expected to vary as ~1/f where
f=7o/T with 0<jf =<1 [23]. Assuming pulses of
sufficiently long duration and low intensity such that the
approximations made here are not entirely inadequate,
then the special case when f <<1 should result in a con-
siderable enhancement of the second harmonic cross sec-
tion.
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